

# Job Recommendation with Hawkes Process

W. Xiao, X. Xu, K. Liang, J. Mao, and J. Wang OneSearch Team, Alibaba Group Boston, MA, USA





#### **Outline**





- **Problem Statement and Setting**
- Our Solution
  - Overall Framework
  - Feature Engineering
  - Learning to Rank with GBDT
  - Remedy for Cold Start
  - Temporal Descriptor with Hawkes Process
- **Results and Discussions**



## Introduction



## **Introduction – OneSearch from Alibaba**







- YunOS BU & Search BU of Alibaba Group
- OneSearch Project Intelligent Data Platform for IOT













## Introduction - OneSearch from Alibaba

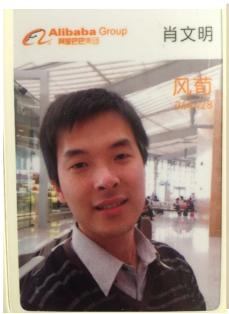






## Team for Challenges

- RecSys2015(Vienna)
  - The Second Place
- KDD Cup 2016 (San Francisco)
  - The Second Place (Phase 1)







Xiao Xu



- RecSys2016
  - The First Place



Kang Liang



Junkang Mao



Jun Wang



## **Problem Statement and Setting**



#### **Problem Statement**





Given the profile information of the users, the content of job posting, and the historical log of users activities, the key task is to recommend a list of job posts, which the users might interact with in the next week

## **Evaluation Metric**

$$score(R,T) = \sum_{i=1}^{N} s(u_i)$$
  
 $s(u_i) = 20 (P_2 + P_4 + R + UserSuccess) + 10(P_6 + P_{20})$ 

## **General Thinking**



Item imp/int trend

Active during test

Item based CF

User based CF

Pairwise Learning

Ensemble Learning
Temporal Descriptor

**Item Selection** 

Match

Rank

Item profiling

User profiling

**User-Item Profile Similarity** 

• • • • •

Two Stage Modeling





#### **Our Solution**



#### **Overall Framework**

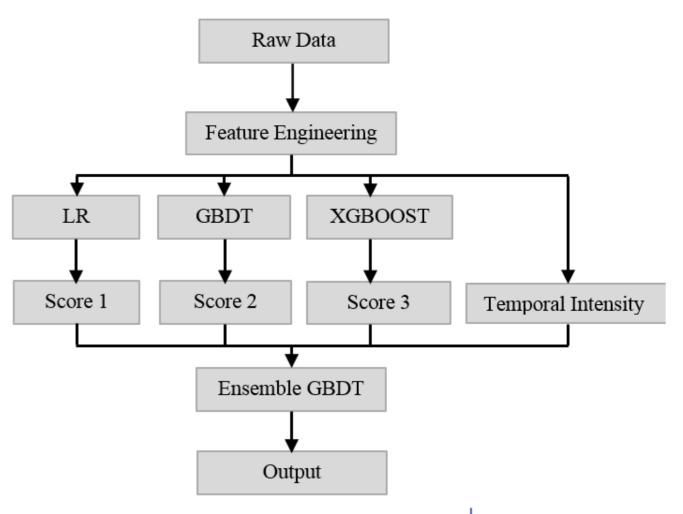




- > LTR with various models to absorb diverse information
- Ensemble GBDT with the input from initial ranking
- > Hawkes Process (self-exciting) to capture temporal patterns

## Final Goal

Generate the right list of job posting to recommend in the right timing



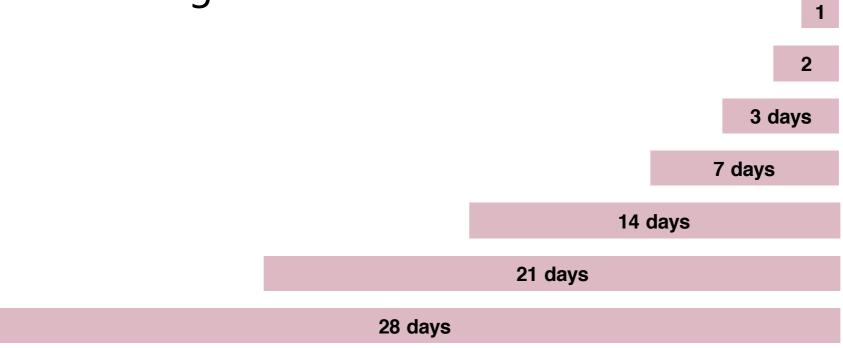
#### **Feature Engineering**





#### **Key characteristics of features**

- Three basic feature categories: user, item, user-item interaction features
- > Extended features with further analysis and statistics
- Aggregation is the remedy for sparsity
- > Time window segmentation



## Features from Low to High Level



user&item profile: 0/1

user/item/ui interaction statistics: (time window) 0/1, count, distinct count, days......

similarity(interaction&profiling) : u2u, i2i, u2i

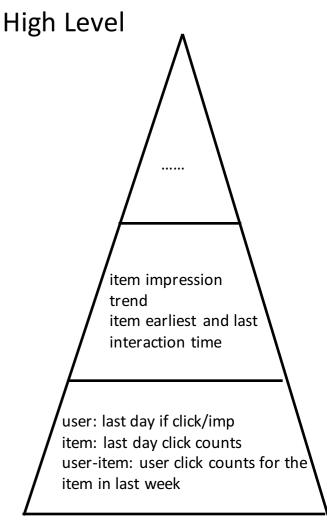
ratio: ui/u, ui/i

trend: item interaction counts

poi: item, user interaction

conditional probability: impression to interaction, interaction to interaction

Low Level



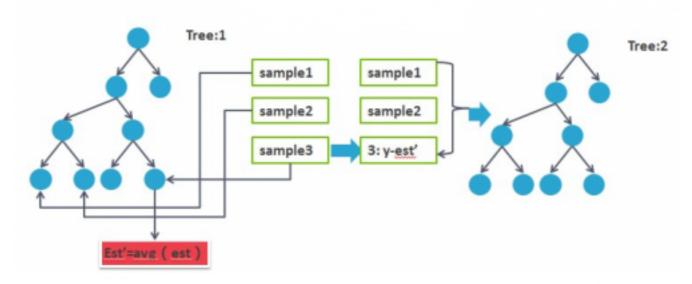
#### **Learning to Rank with GBDT**





# GBDT performs as a major ranking model

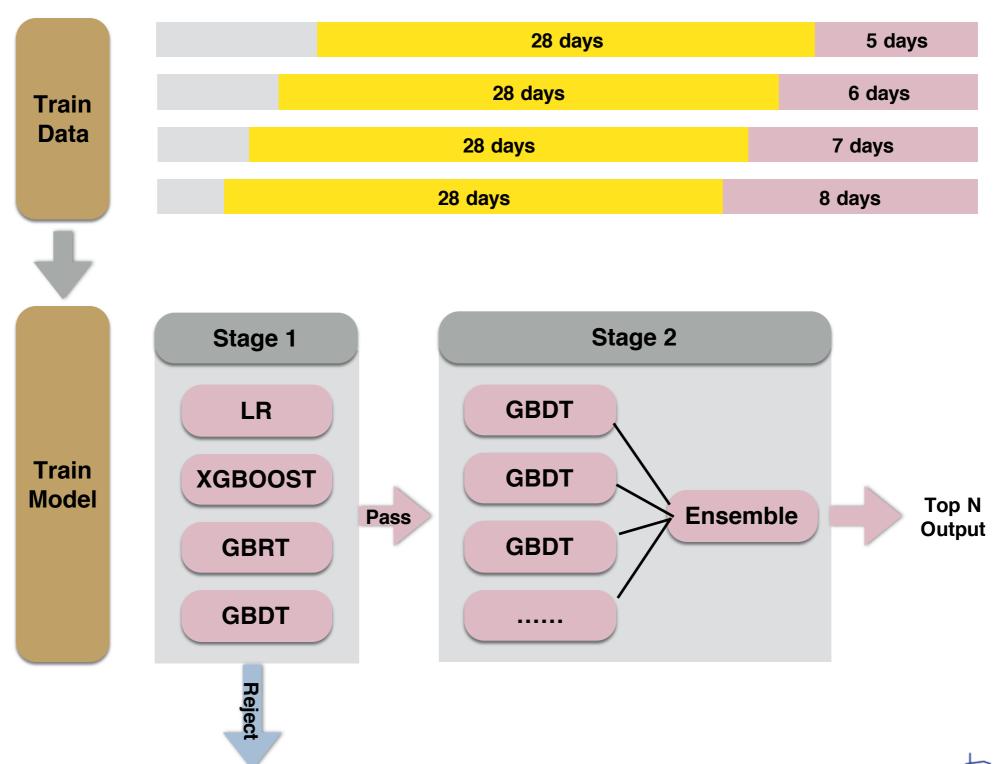
- Residual v.s. gradient
- Different loss functions for boosting
- Pointwise/Pairwise method



| Name                    | Loss                                   | Derivative                                        | $f^*$                                   | Algorithm         |
|-------------------------|----------------------------------------|---------------------------------------------------|-----------------------------------------|-------------------|
| Squared error           | $\frac{1}{2}(y_i - f(\mathbf{x}_i))^2$ | $y_i - f(\mathbf{x}_i)$                           | $\mathbb{E}\left[y \mathbf{x}_i\right]$ | L2Boosting        |
| Absolute error          | $ y_i - f(\mathbf{x}_i) $              | $\operatorname{sgn}(y_i - f(\mathbf{x}_i))$       | $median(y \mathbf{x}_i)$                | Gradient boosting |
| <b>Exponential loss</b> | $\exp(-\tilde{y}_i f(\mathbf{x}_i))$   | $-\tilde{y}_i \exp(-\tilde{y}_i f(\mathbf{x}_i))$ | $\frac{1}{2}\log\frac{\pi_i}{1-\pi_i}$  | AdaBoost          |
| Logloss                 | $\log(1 + e^{-\tilde{y}_i f_i})$       | $y_i - \pi_i$                                     | $\frac{1}{2}\log\frac{\pi_i}{1-\pi_i}$  | LogitBoost        |

## **Model Training**





#### **Cold Start**



# Construct user self-introduction by raw features.

- Demographic data, education degree, career level, work experience, etc.
- Interactions between job roles and job title(or tag).

# Training and recommendation

- Apply LDA to find the latent topic model
- > Apply kmeans to get user clusters.
- Use KNN to get the top-n result.

# Temporal Intensity with Hawkes Process C





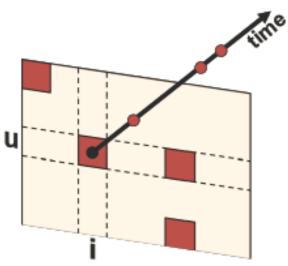
# Self-exciting point process for recurrent event

> The conditional probability that the next user-item event happens at time t

$$\lambda(t)=\lambda_0+lpha\sum_{j=1}^n\gamma(t,t_j)$$
  $\{t_1,t_2,\cdots,t_n\}$  user-item event

 $\lambda_0$  baseline intensity

 $\gamma(t,t_i)$  temporal dependency



User-item event Model, Du, et al. 2015

Homogenous point process

$$\lambda(t) = \lambda_0$$

#### **Low Rank Hawkes Process**



Generalize the modeling the event of single user-item pair to all user-item pairs

$$\lambda^{u,i}(t) = \lambda_0^{u,i} + \alpha^{u,i} \sum_j \gamma(t, t_j^{u,i})$$

 $\Lambda_0$  baseline intensity matrix

 $oldsymbol{A}$  self exciting matrix

$$\gamma(t, t_j^{u,i}) = \exp(-(t - t_j^{u,i})/\sigma)$$
. exponential form

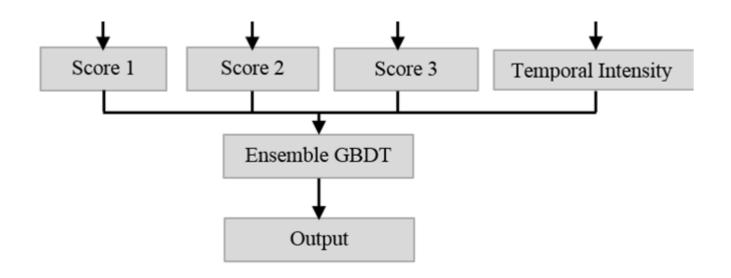
Low rank assumption: both users and items can be categorized into limited number clusters

$$\|\mathbf{\Lambda}_0\|_* \leqslant \lambda', \|\mathbf{A}\|_* \leqslant \beta'$$

## **Ranking with Temporal Intensity**



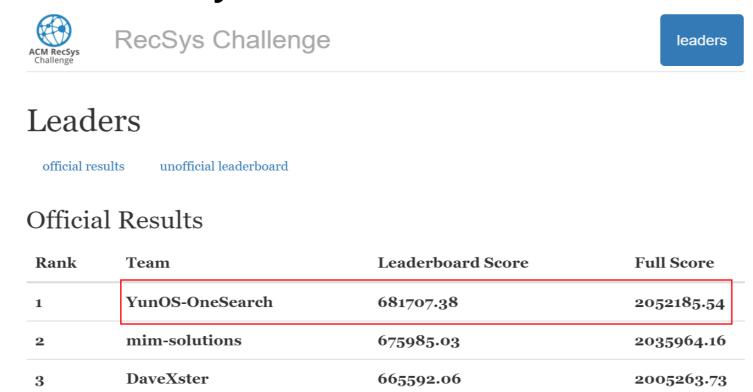
- > Item recommendation with temporal intensity (Du, etal. 2015)
  - 1. Calculate  $\lambda^{u,i}(t)$  for each item i.
  - 2. Sort the items by the descending order of  $\lambda^{u,i}(t)$ .
  - 3. Return the top-k items.
- Temporal intensity as additional features



#### **Results and Future Work**



Results in RecSys 2016



- Ongoing Studies:
- study the impact of the temporal patterns
- combine both contextual and temporal information
- investigate self-exciting and self-correcting process



#### **Thank You!**