

Job Recommendation with Hawkes Process

W. Xiao, X. Xu, K. Liang, J. Mao, and J. Wang OneSearch Team, Alibaba Group Boston, MA, USA

Outline

- **Problem Statement and Setting**
- Our Solution
 - Overall Framework
 - Feature Engineering
 - Learning to Rank with GBDT
 - Remedy for Cold Start
 - Temporal Descriptor with Hawkes Process
- **Results and Discussions**

Introduction

Introduction – OneSearch from Alibaba

- YunOS BU & Search BU of Alibaba Group
- OneSearch Project Intelligent Data Platform for IOT

Introduction - OneSearch from Alibaba

Team for Challenges

- RecSys2015(Vienna)
 - The Second Place
- KDD Cup 2016 (San Francisco)
 - The Second Place (Phase 1)

Xiao Xu

- RecSys2016
 - The First Place

Kang Liang

Junkang Mao

Jun Wang

Problem Statement and Setting

Problem Statement

Given the profile information of the users, the content of job posting, and the historical log of users activities, the key task is to recommend a list of job posts, which the users might interact with in the next week

Evaluation Metric

$$score(R,T) = \sum_{i=1}^{N} s(u_i)$$

 $s(u_i) = 20 (P_2 + P_4 + R + UserSuccess) + 10(P_6 + P_{20})$

General Thinking

Item imp/int trend

Active during test

Item based CF

User based CF

Pairwise Learning

Ensemble Learning
Temporal Descriptor

Item Selection

Match

Rank

Item profiling

User profiling

User-Item Profile Similarity

• • • • •

Two Stage Modeling

Our Solution

Overall Framework

- > LTR with various models to absorb diverse information
- Ensemble GBDT with the input from initial ranking
- > Hawkes Process (self-exciting) to capture temporal patterns

Final Goal

Generate the right list of job posting to recommend in the right timing

Feature Engineering

Key characteristics of features

- Three basic feature categories: user, item, user-item interaction features
- > Extended features with further analysis and statistics
- Aggregation is the remedy for sparsity
- > Time window segmentation

Features from Low to High Level

user&item profile: 0/1

user/item/ui interaction statistics: (time window) 0/1, count, distinct count, days......

similarity(interaction&profiling) : u2u, i2i, u2i

ratio: ui/u, ui/i

trend: item interaction counts

poi: item, user interaction

conditional probability: impression to interaction, interaction to interaction

Low Level

Learning to Rank with GBDT

GBDT performs as a major ranking model

- Residual v.s. gradient
- Different loss functions for boosting
- Pointwise/Pairwise method

Name	Loss	Derivative	f^*	Algorithm
Squared error	$\frac{1}{2}(y_i - f(\mathbf{x}_i))^2$	$y_i - f(\mathbf{x}_i)$	$\mathbb{E}\left[y \mathbf{x}_i\right]$	L2Boosting
Absolute error	$ y_i - f(\mathbf{x}_i) $	$\operatorname{sgn}(y_i - f(\mathbf{x}_i))$	$median(y \mathbf{x}_i)$	Gradient boosting
Exponential loss	$\exp(-\tilde{y}_i f(\mathbf{x}_i))$	$-\tilde{y}_i \exp(-\tilde{y}_i f(\mathbf{x}_i))$	$\frac{1}{2}\log\frac{\pi_i}{1-\pi_i}$	AdaBoost
Logloss	$\log(1 + e^{-\tilde{y}_i f_i})$	$y_i - \pi_i$	$\frac{1}{2}\log\frac{\pi_i}{1-\pi_i}$	LogitBoost

Model Training

Cold Start

Construct user self-introduction by raw features.

- Demographic data, education degree, career level, work experience, etc.
- Interactions between job roles and job title(or tag).

Training and recommendation

- Apply LDA to find the latent topic model
- > Apply kmeans to get user clusters.
- Use KNN to get the top-n result.

Temporal Intensity with Hawkes Process C

Self-exciting point process for recurrent event

> The conditional probability that the next user-item event happens at time t

$$\lambda(t)=\lambda_0+lpha\sum_{j=1}^n\gamma(t,t_j)$$
 $\{t_1,t_2,\cdots,t_n\}$ user-item event

 λ_0 baseline intensity

 $\gamma(t,t_i)$ temporal dependency

User-item event Model, Du, et al. 2015

Homogenous point process

$$\lambda(t) = \lambda_0$$

Low Rank Hawkes Process

Generalize the modeling the event of single user-item pair to all user-item pairs

$$\lambda^{u,i}(t) = \lambda_0^{u,i} + \alpha^{u,i} \sum_j \gamma(t, t_j^{u,i})$$

 Λ_0 baseline intensity matrix

 $oldsymbol{A}$ self exciting matrix

$$\gamma(t, t_j^{u,i}) = \exp(-(t - t_j^{u,i})/\sigma)$$
. exponential form

Low rank assumption: both users and items can be categorized into limited number clusters

$$\|\mathbf{\Lambda}_0\|_* \leqslant \lambda', \|\mathbf{A}\|_* \leqslant \beta'$$

Ranking with Temporal Intensity

- > Item recommendation with temporal intensity (Du, etal. 2015)
 - 1. Calculate $\lambda^{u,i}(t)$ for each item i.
 - 2. Sort the items by the descending order of $\lambda^{u,i}(t)$.
 - 3. Return the top-k items.
- Temporal intensity as additional features

Results and Future Work

Results in RecSys 2016

- Ongoing Studies:
- study the impact of the temporal patterns
- combine both contextual and temporal information
- investigate self-exciting and self-correcting process

Thank You!